A Non-Associative Rickart's Dense-Range-Homomorphism Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism

Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.

متن کامل

A homomorphism theorem for bilinear multipliers

In this paper we prove an abstract homomorphism theorem for bilinear multipliers in the setting of locally compact Abelian (LCA) groups. We also provide some applications. In particular, we obtain a bilinear abstract version of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type. We also obtain necessary conditions on bilinear multipliers on non-compact LCA groups, yielding b...

متن کامل

A Dichotomy Theorem for Homomorphism Polynomials

In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H . We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P ). We...

متن کامل

A Dichotomy Theorem for General Minimum Cost Homomorphism Problem

In the constraint satisfaction problem (CSP ), the aim is to find an assignment of values to a set of variables subject to specified constraints. In the minimum cost homomorphism problem (MinHom), one is additionally given weights cva for every variable v and value a, and the aim is to find an assignment f to the variables that minimizes ∑ v cvf(v). Let MinHom (Γ) denote the MinHom problem para...

متن کامل

A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem

In the constraint satisfaction problem (CSP ), the aim is to find an assignment of values to a set of variables subject to specified constraints. In the minimum cost homomorphism problem (MinHom), one is additionally given weights cva for every variable v and value a, and the aim is to find an assignment f to the variables that minimizes ∑ v cvf(v). Let MinHom (Γ) denote the MinHom problem para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Quarterly Journal of Mathematics

سال: 2003

ISSN: 0033-5606,1464-3847

DOI: 10.1093/qmath/hag015